![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
2.1.2 导数的定义
定义1 设函数y=f(x)在点x0的某邻域内有定义,当自变量x在点x0处取得增量Δx(点x0+Δx仍在该邻域)时,相应的函数y取得增量Δy=f(x0+Δx)-f(x0),如果极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071001.jpg?sign=1739234738-gq0DOPQZbwnUq2FbZKNRmAmQO9LPZRVX-0-bdce8aa3ec71b860b5fd651db3db39de)
存在,则称函数y=f(x)在点x0处可导,极限值称为函数y=f(x)在点x0处的导数,记作f′(x0),即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071002.jpg?sign=1739234738-TxBd3pGgZUxT1yXZCIqlT773GtSlDbEe-0-e492a80407b89e77f2c1fc9bd0afc167)
函数y=f(x)在点x0处的导数也可记为
上述极限中,若令x=x0+Δx,则当Δx→0时,x→x0,导数还可以表示为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071004.jpg?sign=1739234738-VLYcOn8997o4uTDCQuvKVehsrXDSKZkb-0-2aea25d48072589da61718d838a71b8f)
如果记Δx=h,导数也可表示为
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071005.jpg?sign=1739234738-9tdUXpBeUI42KTrICG619mzaWYcesWXP-0-766e5d19269fef618cc1efb24dc0c6de)
函数f(x)在点x0处可导也可以说成函数f(x)在点x0处导数存在或具有导数.
如果函数y=f(x)在开区间(a,b)内的每一点都可导,则称函数f(x)在开区间(a,b)内可导,即对任何x∈(a,b),有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071006.jpg?sign=1739234738-SeWakZavJxJW0AZ6bUWVdSPNpNcMOOv4-0-3141b9167b2324eb688518eec4b94fec)
这样对于开区间(a,b)内的每一个确定的x都对应着一个确定的导数f′(x),这就构成了一个新的函数,称为导函数(简称为f(x)的导数).记作f′(x),y′,
而f′(x0)为导函数f′(x)当x=x0时的函数值,即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071008.jpg?sign=1739234738-F2aFy9k9BcS3b8Hm1popGQYtJ4uX2Zl8-0-afa064a3892036ab4ce601a1d0b35505)
例1 设f′(x0)存在,求极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00071009.jpg?sign=1739234738-8sQKxnhEkwD9cvkwIJ6WCaZYD9YAWpMw-0-977e7d10d8c1a412750730d9685569d6)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072001.jpg?sign=1739234738-dhsvCad3fGhm69oUVSD7aomyu7vT02h7-0-f146eccb8e5213ae5f96f0ade2d476eb)
下面利用导数的定义来求一些简单函数的导数.
例2 求函数f(x)=C(C是常数)的导数.
解
即(C)′=0.
例3 求函数f(x)=xn(n∈N+)在x=a处的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072003.jpg?sign=1739234738-3MrxosjHfAtAFckAEOSG9QGcMLqAUVsl-0-181403de687852dc723b7fa94919a66d)
推广可得
(xn)′=nxn-1.
更一般地,有
(xμ)′=μxμ-1 (μ为实数).
例4 求函数的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072005.jpg?sign=1739234738-Mu1hITxNZP5BnpytX8Na0EI55DkPdke9-0-4d7746c1115ec2ec6d2cf2e0b560af7d)
例5 求函数的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072007.jpg?sign=1739234738-Jl2IvGIdo6y9QlyXb1GdZ2jzTKN9iITw-0-be806d733fa2dd43d6a011cb5dfd0b00)
例6 求函数f(x)=sinx的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00072008.jpg?sign=1739234738-qXwYFdkOFGJ1cveHxIf1wzJB3Cz27DPj-0-aa20c2d4a7e4552e50ddbff71c06063a)
类似可得
(cosx)′=-sinx.
例7 求函数f(x)=ex的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073001.jpg?sign=1739234738-LcM2K88LPQYM2T1PaskEXy9BqtL8ggi7-0-c2409b3ce787f1a802b705aa7caf8df7)
即 (ex)′=ex.
类似可得 (ax)′=axlna.
例8 求函数f(x)=lnx的导数.
解 由定义有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073002.jpg?sign=1739234738-XMV217iZux1PNvuox4rX7FarJduYKh7E-0-b0d24a086ecfb14a6a648594bbf3a801)
定义2 如果y=f(x)在(x0-δ,x0]有定义,若左极限
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073003.jpg?sign=1739234738-fFxHUM0fqnfbyqbN6O2C6TkYHmgUtbsm-0-901d335df8fee916cafb3fdd4db4d0bc)
存在,则称函数f(x)在点x0左侧可导,并把上述左极限称为函数f(x)在点x0的左导数,记作f′-(x0),即
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073004.jpg?sign=1739234738-6as36WlADMhcM7HAfu8ZFxF4u2K8NSPa-0-9e3980d288703c55960530875ca11268)
类似地可以定义函数f(x)在点x0的右侧可导及右导数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00073005.jpg?sign=1739234738-DJCetLMAM8zcANDwTkF6FY8vib81TuJl-0-fa788e1d0637a59b1984b8cb335edc3e)
由极限存在的条件,有
性质 函数f(x)在点x0可导的充分必要条件是在点x0的左、右导数都存在并且相等,即
f′(x0)存在⇔f′-(x0)=f′+(x0).
由单侧导数可以定义函数在闭区间[a,b]上可导.如果函数f(x)在开区间(a,b)内可导,且在a点的右导数存在,在b点的左导数存在,则称函数在闭区间[a,b]上可导.
例9 讨论函数f(x)=|x|在x=0处的可导性.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074001.jpg?sign=1739234738-I383hihQyPnnca2j9epSKL8vOXoXXCgp-0-df308f33e26f297c7b0dffa859cd25a5)
因此不存在,故f(x)=|x|在x=0处不可导.
例10 设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074003.jpg?sign=1739234738-H13A4VJJQbttnNzO7sBEYVAJoD3nATb7-0-b998e4d14a9bd1142274070b5240db04)
判别f(x)在x=1处是否可导.
解 由于
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00074004.jpg?sign=1739234738-b61MKUAHl7aXViMuOF3NcqX5P5xdVSCq-0-00c1187bae2f685dfdba02cf818199f5)
所以f(x)在x=1处不可导.