![伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/619/27032619/b_27032619.jpg)
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1738930164-1O5JyHJc4hSEVpk0XhEh2pess4fOLSV4-0-61e888f3cdcf990f50fe63579a7824cf)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1738930164-zgtjPb8RY4lJPV7vpSeeBugcrgvV6TdI-0-81ba547e3b568240d483524ff27423e9)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1738930164-z7Hh7vlPjUByrRKsQ7Ctmj6JRMkqa3Jk-0-90bb1f6ea3e6053d049b0b4a5b0749bd)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1738930164-NXqu8q9wfVBXEnSZjszLtoWwvxqi5ldk-0-9edfa56d32271f270f2ebd405cf7aab8)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1738930164-XPfAI9P3HZFulzR2aEyMmGP8natT22OF-0-24a2936be3be206ee675192105597d71)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1738930164-OeWp1Wp9Vok54p2MKUfxlfhiy1P4zwiV-0-1cd7328cd3b8aebfc48e371189fde1bb)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1738930164-uVmhsXtzxULw6Y53dOzqKv40DpDRWQ9D-0-bb0e1a58f76bf63b6f682f5394fc91b4)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1738930164-FWRK3UT6EoyBqjnW19Fy2DcrXtB0Wq5Q-0-4e0cc1ff030c3225a82de75a0b56ea6a)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1738930164-78dnfRSpSMSsXQN89MIKHaTiDt37bVqe-0-dff11292f69e8feda19474c98c97ec94)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1738930164-8H5OV2lAfvuHJg3qoz7GLdtwUt0QEuH9-0-5672e1c3cca9bd0f93dde0cb8e03e839)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1738930164-uXTCT8TsYwl1oKO2LnEChqrAcXh6AII3-0-7f84d3284fc18531afa5765c7d786d8e)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1738930164-MrrVqJYTWEz07VzisIaLNid0E0tvAcEv-0-8983ac31254729637ade469415995b7f)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1738930164-mLeIwk1f1UJkusKcIhagVEh2PZKOfCVb-0-7efcc7cece243fd3687369ab6871e049)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1738930164-lUdwTbCFHPQISgiP5mt3JbqP3aqTVEax-0-2c4ea9a18ae3e2634733bd16bbcc4b01)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1738930164-IWttyaEoOIjZuT9zvYCmsqiXqH5ACZrU-0-2c4e870d76b671dd929bf079d0802e06)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1738930164-fjs7DOxG2YZLfUwKdB4PjE1hg5uBrkRO-0-f4044108a6d431b77664a871270d3875)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1738930164-tXRLNBb9NM2vJqINqnYayMbWqGRNmDW5-0-b0d0bcb1999bcde335a6a081b3273c25)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1738930164-nOwjsQT7kXMf9hmlo7pYc9LmEiXZDPn0-0-83349ac0b58f8f9b139abb9f4375e51a)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1738930164-IpntW6qu02fZHEskEi5iiafJ8vjAM0Ib-0-b996fe43a3a08ae6740d8dadbe6e6040)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1738930164-Xcv1grTFGiLMaVOyHKJxr9nGBsModBik-0-d2cfdb1859f5d668d562ea93777622be)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1738930164-uRfbxBwXTDBBsxbb7bOjxevsdgDi8Fr1-0-a14739f7ad080b7cbe4806264525b32e)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1738930164-nz2AwR3GvkfUqKsPQyvf70YwbqEkJOhj-0-847bc1887b1cd4501b3021bcdcfff74b)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1738930164-5sbeMaD21cwmCDUkNSZZl2yfDNee0yRX-0-df027cd5d795d29493c99dd449c9fc2f)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1738930164-tcWUtljHJiy7sz6XxlfUzh780B4Lhqac-0-6f297f02a47bcfc03328181ad8fe6449)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1738930164-Q1egbmHfqh4EVpivVhBOtWEfPJSDybjB-0-b496a620a18d46d2a7f51f5790d94aa6)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1738930164-pSOJQfe8b3DdQvttAelbpojlcycMqAdb-0-c6a5d7fb07c7ab132954e543c96cd81f)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1738930164-zJEFOoTrn8mi3vIoHDqysh6jgLSUwhAV-0-677952c0b10586a341472f055da55a48)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1738930164-15TRgJXqmDmTRNjNiNpVJr7AJyWOXgCm-0-56b83446bf20d870d9775259d129a488)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1738930164-MXQytuNYSn7NhuaywmoLOmVAksMrlEYs-0-96f29c77bafad67358e56440d0c53aa6)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1738930164-iEBnWdQsfTexmlqqy7rtidtQn0AlaXgj-0-ee85a06e2ca62e21df8c0518fe8e5941)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1738930164-kuxU3YsgV1rLpUv0oCbO1WGnMNcitqGF-0-a6e7ecf5528e14edee7d6a8f35ad24ef)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1738930164-MRD8RxINwyBruoDqfoNUSAPQyZcVd9Bn-0-4fb85e018faba71391cb3f328ed2c248)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1738930164-DJhPKiGyHjmAjJeZWYrgKC9g2R2ugAMi-0-c3f286bab11097ae9deca5443fd82b6b)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1738930164-o34F3XXyQjyNkB6FMNK53CXXctkSioq6-0-6f16a14bad812f1bf70ae0c62319f0f2)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1738930164-QaKFX1w8mGiTpKMNnnXJmGFyUzT0TS7b-0-84be7c4c212712e6efd6700468077238)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.