![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
定理2 如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,则它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078003.jpg?sign=1739235367-cFMRyfvMPZAZEY7CfaU3gxSbVJvy2Kae-0-15302c471cc219e1eba14281a606d0ce)
证 由于x=f(y)在区间Iy内单调,故其反函数y=f-1(x)在区间Ix存在、单调且连续,因此,对于任何x∈Ix,当Δx≠0时,
Δy=f-1(x+Δx)-f-1(x)≠0,
从而
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078004.jpg?sign=1739235367-j23fpiTg9BVa6MToauSolgDCaFjUwL8V-0-f35c7653c7a693549b2fc3d853a88acb)
由于x=f(y)与y=f-1(x)的连续性,即Δx→0时,Δy→0,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078005.jpg?sign=1739235367-q8fvXS70i7nI5jInhU9TMg1AYJ5yDw88-0-734eaf63f667846f068ef18561735746)
例7 求y=arcsinx的导数.
解 设x=siny,,其反函数为y=arcsinx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078007.jpg?sign=1739235367-GtrTXsyjaSBeTW8VBDBtRVWh4mNFNFpC-0-2bdf4ae3bbaece90ea9176c5c4cda1be)
又由于,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078009.jpg?sign=1739235367-bThyebeAi5OquCTN47lwPk9CrpoEfbKs-0-5050c697be5644005e7b3e3134330e97)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079001.jpg?sign=1739235367-T3HPU9cKlzLEOPlQRsG3fMkQrrVEgmwB-0-905c445ecc7d72499e7a5e93667ef3a3)
例8 求y=arctanx的导数.
解 设x=tany,,其反函数为y=arctanx,由公式
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079003.jpg?sign=1739235367-5zYCeDKFgf2n1tYFk6wj2tGeERvOVbCV-0-1ed7843c34c5472fc2f2493e164a6e30)
又由于sec2y=1+tan2y=1+x2,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079004.jpg?sign=1739235367-qpm2rgiWbNNCU6pvO9RpKLAuqFiQDoR9-0-b0a743a347cf870a24ea34a5edd9628f)
类似可得
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079005.jpg?sign=1739235367-CmdQPoOJnqK26DjjMtf4lrsivvJVVlZX-0-93b11141eed82a8105ce24e58c81b22d)
例9 求y=logax的导数.
解 x=ay与y=logax互为反函数,因此
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00079006.jpg?sign=1739235367-Ya6Pxs6nMmtAVyV5U7X4MJp5iVhJ6R96-0-1ba89a7441c0d8fb94e2a664ff048f47)