![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077001.jpg?sign=1739236467-8QCgchJG1EesxXYRoKj5Js9twS5wCax8-0-c8de62be3b3e4cbd88256c7f9dc33a44)
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077002.jpg?sign=1739236467-d7Ih7JeI0m7UUQLZnJa8aHndobNOHoAU-0-44e3f3bfc96382b5fc1f17dea37f4213)
例1 求函数y=tanx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077003.jpg?sign=1739236467-J6OQNDpQzsTkfdVgpOSGsrTqORYdCRe3-0-edcab72759fcb6eb7f2aa2287710a6fd)
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077004.jpg?sign=1739236467-ZIR9xgkNJsjewbELwtTJ2PIklW8rPhcK-0-3bafd8ceb577b59a844a2cbbf8708073)
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078001.jpg?sign=1739236467-8glHYqMzqI9OmTIZqdi7qq9sxWJ0HHfL-0-8b6ebab8718bcfc1209f3fd7b5abeca6)
例5 设f(x)=x2lnx,求f′(x).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078002.jpg?sign=1739236467-gdlbT1KQZES2WshAbm3uSTi9PQ7a4icz-0-4e908497ac3a247abb4fa75d3979ce38)