
会员
工业级知识图谱:方法与实践
张伟 陈华钧 张亦弛更新时间:2021-10-15 18:55:05
最新章节:参考文献开会员,本书免费读 >
本书源于阿里巴巴千亿级知识图谱构建与产业化应用的工作总结,对知识图谱理论和大规模工业实践进行了全面和深入的阐述。本书以阿里巴巴的实战经验为中心,以深厚的理论成果为支撑,详细阐述了知识图谱的方方面面。首先介绍工业场景下知识图谱的现状、存在的问题和架构设计;然后从知识表示、知识融合、知识获取、知识推理、知识存储和知识图谱前沿方向等方面入手,介绍大规模商品知识图谱的构建方法;最后结合阿里巴巴的业务实践,详细介绍知识图谱的产品设计、技术实现和业务应用细节。通过阅读本书,读者不仅可以从零开始认识知识图谱,了解知识图谱技术方法和前沿技术方向,而且可以熟悉知识图谱工业实践的实现路径,清楚知识图谱的应用方向和方法。本书介绍的成果获得钱伟长中文信息处理科学技术一等奖。本书在知识图谱的广度和深度上兼具极强的参考性,适合人工智能相关行业的管理者和研发人员、高等院校的计算机专业学生阅读。
上架时间:2021-08-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
张伟 陈华钧 张亦弛
主页
同类热门书
最新上架
- 会员
用ChatGPT轻松玩转机器学习与深度学习
本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
人工智能治理研究
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。计算机23.9万字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
贝叶斯算法与机器学习
本书共分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。计算机0字 - 会员
秒懂AI提问:让人工智能成为你的效率神器
我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工计算机5.4万字 - 会员
AI时代产品经理升级之道:ChatGPT让产品经理插上翅膀
本书是一本面向产品经理的实用新书,分12章探讨如何用ChatGPT提升产品管理工作的效率和质量。第1章介绍了人工智能对产品管理的影响;第2章介绍用ChatGPT提高文档写作效率;第3章介绍用ChatGPT进行竞品和市场分析;第4章介绍用ChatGPT优化需求管理;第5章介绍用ChatGPT分析产品数据;第6章介绍用ChatGPT改进用户体验;第7章介绍用ChatGPT设计产品原型;第8章介绍用Ch计算机11.5万字 - 会员
从零构建大模型
本书是关于如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安·拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。计算机13.8万字